
RLLTE: Long-Term Evolution Project of
Reinforcement Learning

1Mingqi Yuan, 2Zequn Zhang, 3Yang Xu, 4Shihao Luo, 1Bo Li, 2Xin Jin, and
2Wenjun Zeng

1The Hong Kong Polytechnic University
2Eastern Institute for Advanced Study

3Purdue University
4Dajiang Innovation Technology Co., Ltd.

Background

❑ Volatile performance of different implementations;

❑ Algorithm updates are very complex and miscellaneous;

❑ Unfriendly support for the latest tricks;

❑ Incomplete benchmark testing;

❑ Expensive computational cost of algorithm reproduction;

❑ Few active repositories;

❑ High learning costs for developers.

What is RLLTE?

❑ A novel reinforcement learning (RL) framework inspired by the long-

term evolution (LTE) standard project in telecommunications.

❑ GitHub Link: https://github.com/RLE-Foundation/rllte

https://github.com/RLE-Foundation/rllte

What is RLLTE for?

For Industry:

❑ Ultrafast application construction;

❑ High scalability and friendly interface;

❑ Convenient model deployment.

For Academia:

❑ Accelerating algorithm development;

❑ Tracking the latest research progress;

❑ Reusable and reliable baselines;

Highlight Features

❑ 🧬 Long-term evolution for providing latest algorithms and tricks;

❑ 🏞️ Complete ecosystem for task design, model training, evaluation, and

deployment (TensorRT, CANN, ...);

❑ 🧱 Module-oriented design for complete decoupling of RL algorithms;

❑ 🚀 Optimized workflow for full hardware acceleration;

❑ ⚙️ Support custom environments and modules;

❑ 🖥️ Support multiple computing devices like GPU and NPU;

❑ 💾 Large number of reusable benchmarks (rllte-hub);

❑ 👨‍✈️ Large language model-empowered copilot.

https://github.com/RLE-Foundation/rllte-hub

Architecture (Overview)

Architecture

❑ Common: Prototypes and auxiliary modules.

❑ Xploit: Modules that focus on exploitation in RL.

➢ Encoder: feature extraction;

➢ Policy: interaction and learning;

➢ Storage: experience storage and sampling.

❑ Xplore: Modules that focus on exploration in RL.

➢ Distribution: action sampling;

➢ Augmentation: observation data augmentation;

➢ Reward: intrinsic reward modules.

Architecture

❑ Agent: Implemented RL Agents using RLLTE building blocks.

❑ Pre-Training: Methods of pre-training in RL.

❑ Deployment: Methods of model deployment in RL.

❑ Copilot: LLM-based copilot that helps developer build RL applications;

❑ Hub: Fast training API and reusable benchmarks.

❑ Evaluation: Reasonable and reliable metrics for algorithm evaluation.

❑ Env: Packaged environments (e.g., Atari games) for fast invocation.

Fast Algorithm Development

❑ Three steps to implement an agent:

Prototype
Selection

Modules
Selection

Update
Function

from rllte.common.prototype import OnPolicyAgent

from rllte.common.prototype import OnPolicyAgent
from rllte.xploit.encoder import MnihCnnEncoder
from rllte.xploit.policy import OnPolicySharedActorCritic
from rllte.xploit.storage import VanillaRolloutStorage
from rllte.xplore.distribution import Categorical

def update(self) -> Dict[str, float]:

Training with Implemented Agents

❑ RLLTE provides implementations for well-recognized RL algorithms

and simple interface for building applications:

import `env` and `agent` api
from rllte.env import make_dmc_env
from rllte.agent import DrQv2

if __name__ == "__main__":
device = "cuda:0"
create env, `eval_env` is optional
env = make_dmc_env(env_id="cartpole_balance", device=device)
create agent
agent = DrQv2(env=env, device=device, tag="drqv2_dmc_pixel")
start training
agent.train(num_train_steps=500000)

Training with Implemented Agents

❑ Training Example:

Module Replacement

❑ The module-oriented design allows developers to perform module

replacement to make model comparison and improvement:

compare the performance of different encoders
from rllte.agent import DrQv2
from rllte.xploit.encoder import MnihCnnEncoder, TassaCnnEncoder

if __name__ == "__main__":
agent = DrQv2(...)

encoder1 = MnihCnnEncoder(...)
encoder2 = TassaCnnEncoder(...)

agent.set(encoder=encoder1)
agent.train(...)

agent.set(encoder=encoder2)
agent.train(...)

RLLTE Pre-training

❑ Pre-training Based on Intrinsic Rewards

from rllte.agent import PPO
from rllte.env import make_atari_env
from rllte.xplore.reward import RE3

if __name__ == "__main__":
env setup
device = "cuda:0"
env = make_atari_env(device=device)
create agent and turn on pre-training mode
agent = PPO(env=env,

device=device,
tag="ppo_atari",
pretraining=True)

create intrinsic reward
re3 = RE3(observation_space=env.observation_space,

action_space=env.action_space,
device=device)

set the intrinsic reward module
agent.set(reward=re3)
start training
agent.train(num_train_steps=25000000)

RLLTE Deployment

❑ Model Deployment Based-on TensorRT and CANN

RLLTE Copilot

❑ LLM-Based Copilot: An attempt

RLLTE Evaluation Toolbox

❑ RLLTE provides evaluation methods based on:

Agarwal R, Schwarzer M, Castro P S, et al. Deep reinforcement learning at the edge of

the statistical precipice[J]. Advances in neural information processing systems, 2021,

34: 29304-29320.

RLLTE Hub

❑ Hub: Fast training API and reusable benchmarks.

➢ Datasets: test scores and learning cures of various RL algorithms

on different benchmarks.

➢ Models: trained models of various RL algorithms on different

benchmarks.

➢ Applications: fast-API for training RL agents with one-line

command.

from rllte.hub.datasets import Procgen

from rllte.hub.models import Procgen

python -m rllte.hub.apps.ppo_procgen --env_id bigfish

RLLTE Env

❑ Packaged environments (Part)

Function Name Remark

make_atari_env Atari Games Discrete control

make_bullet_env PyBullet Robotics Environments Continuous control

make_dmc_env DeepMind Control Suite Continuous control

make_minigrid_env MiniGrid Games Discrete control

make_procgen_env Procgen Games Discrete control

make_robosuite_env Robosuite Robotics Environments Continuous control

Project Evolution

❑ RLLTE Project Update Tenet

➢ General;

➢ Improvements in sample efficiency or generalization ability;

➢ Excellent performance on recognized benchmarks;

➢ Promising tools for RL.

Future Work

❑ Advanced LLM-Based Copilot;

❑ Support Multi-Agent Reinforcement Learning;

❑ Support Offline Reinforcement Learning;

❑ Hardware-Level Code Acceleration;

❑ More Convenient Interface for Everyone;

❑ General Reinforcement Learning Model.

Contact Us

❑ 🏠 GitHub Link: https://github.com/RLE-Foundation/rllte

❑ 📧 E-mail: friedrichyuan19990827@gmail.com

❑ 📕 Documentation: https://docs.rllte.dev/

❑ 💾 Benchmarks: https://hub.rllte.dev/

❑ 💬 Discussions: https://github.com/RLE-Foundation/rllte/discussions

https://github.com/RLE-Foundation/rllte
mailto:friedrichyuan19990827@gmail.com
https://docs.rllte.dev/
https://docs.rllte.dev/
https://github.com/RLE-Foundation/rllte/discussions

Thanks！

