IMPALA
IMPALA(
env: VecEnv, eval_env: Optional[VecEnv] = None, tag: str = 'default', seed: int = 1,
device: str = 'cpu', num_steps: int = 80, num_actors: int = 45, num_learners: int = 4,
num_storages: int = 60, feature_dim: int = 512, batch_size: int = 4, lr: float = 0.0004,
eps: float = 0.01, hidden_dim: int = 512, use_lstm: bool = False, ent_coef: float = 0.01,
baseline_coef: float = 0.5, max_grad_norm: float = 40, discount: float = 0.99,
init_fn: str = 'identity'
)
Importance Weighted Actor-Learner Architecture (IMPALA). Based on: https://github.com/facebookresearch/torchbeast/blob/main/torchbeast/monobeast.py
Args
- env (VecEnv) : Vectorized environments for training.
- eval_env (VecEnv) : Vectorized environments for evaluation.
- tag (str) : An experiment tag.
- seed (int) : Random seed for reproduction.
- device (str) : Device (cpu, cuda, ...) on which the code should be run.
- num_steps (int) : The sample length of per rollout.
- num_actors (int) : Number of actors.
- num_learners (int) : Number of learners.
- num_storages (int) : Number of storages.
- feature_dim (int) : Number of features extracted by the encoder.
- batch_size (int) : Number of samples per batch to load.
- lr (float) : The learning rate.
- eps (float) : Term added to the denominator to improve numerical stability.
- hidden_dim (int) : The size of the hidden layers.
- use_lstm (bool) : Use LSTM in the policy network or not.
- ent_coef (float) : Weighting coefficient of entropy bonus.
- baseline_coef (float) : Weighting coefficient of baseline value loss.
- max_grad_norm (float) : Maximum norm of gradients.
- discount (float) : Discount factor.
- init_fn (str) : Parameters initialization method.
Returns
IMPALA agent instance.
Methods:
.update
Update the learner model.
Args
- batch (Batch) : Batch samples.
- lock (Lock) : Thread lock.
Returns
Training metrics.