Skip to content

PPG

source

PPG(
   env: VecEnv, eval_env: Optional[VecEnv] = None, tag: str = 'default', seed: int = 1,
   device: str = 'cpu', pretraining: bool = False, num_steps: int = 128,
   feature_dim: int = 512, batch_size: int = 256, lr: float = 0.00025, eps: float = 1e-05,
   hidden_dim: int = 512, clip_range: float = 0.2, clip_range_vf: float = 0.2,
   vf_coef: float = 0.5, ent_coef: float = 0.01, max_grad_norm: float = 0.5,
   policy_epochs: int = 32, aux_epochs: int = 6, kl_coef: float = 1.0,
   num_aux_mini_batch: int = 4, num_aux_grad_accum: int = 1, discount: float = 0.999,
   init_fn: str = 'xavier_uniform'
)


Phasic Policy Gradient (PPG). Based on: https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppg_procgen.py

Args

  • env (VecEnv) : Vectorized environments for training.
  • eval_env (VecEnv) : Vectorized environments for evaluation.
  • tag (str) : An experiment tag.
  • seed (int) : Random seed for reproduction.
  • device (str) : Device (cpu, cuda, ...) on which the code should be run.
  • pretraining (bool) : Turn on the pre-training mode.
  • num_steps (int) : The sample length of per rollout.
  • feature_dim (int) : Number of features extracted by the encoder.
  • batch_size (int) : Number of samples per batch to load.
  • lr (float) : The learning rate.
  • eps (float) : Term added to the denominator to improve numerical stability.
  • hidden_dim (int) : The size of the hidden layers.
  • clip_range (float) : Clipping parameter.
  • clip_range_vf (float) : Clipping parameter for the value function.
  • vf_coef (float) : Weighting coefficient of value loss.
  • ent_coef (float) : Weighting coefficient of entropy bonus.
  • max_grad_norm (float) : Maximum norm of gradients.
  • policy_epochs (int) : Number of iterations in the policy phase.
  • aux_epochs (int) : Number of iterations in the auxiliary phase.
  • kl_coef (float) : Weighting coefficient of divergence loss.
  • num_aux_grad_accum (int) : Number of gradient accumulation for auxiliary phase update.
  • discount (float) : Discount factor.
  • init_fn (str) : Parameters initialization method.

num_aux_mini_batch (int) Number of mini-batches in auxiliary phase.

Returns

PPG agent instance.

Methods:

.update

source

.update()


Update function that returns training metrics such as policy loss, value loss, etc..