BaseReward
BaseReward(
envs: VectorEnv, device: str = 'cpu', beta: float = 1.0, kappa: float = 0.0,
gamma: Optional[float] = None, rwd_norm_type: str = 'rms', obs_norm_type: str = 'rms'
)
Base class of reward module.
Args
- envs (VectorEnv) : The vectorized environments.
- device (str) : Device (cpu, cuda, ...) on which the code should be run.
- beta (float) : The initial weighting coefficient of the intrinsic rewards.
- kappa (float) : The decay rate of the weighting coefficient.
- gamma (Optional[float]) : Intrinsic reward discount rate, default is
None
. - rwd_norm_type (str) : Normalization type for intrinsic rewards from ['rms', 'minmax', 'none'].
- obs_norm_type (str) : Normalization type for observations data from ['rms', 'none'].
Returns
Instance of the base reward module.
Methods:
.weight
Get the weighting coefficient of the intrinsic rewards.
.scale
Scale the intrinsic rewards.
Args
- rewards (th.Tensor) : The intrinsic rewards with shape (n_steps, n_envs).
Returns
The scaled intrinsic rewards.
.normalize
Normalize the observations data, especially useful for images-based observations.
.init_normalization
Initialize the normalization parameters for observations if the RMS is used.
.watch
.watch(
observations: th.Tensor, actions: th.Tensor, rewards: th.Tensor,
terminateds: th.Tensor, truncateds: th.Tensor, next_observations: th.Tensor
)
Watch the interaction processes and obtain necessary elements for reward computation.
Args
- observations (th.Tensor) : Observations data with shape (n_envs, *obs_shape).
- actions (th.Tensor) : Actions data with shape (n_envs, *action_shape).
- rewards (th.Tensor) : Extrinsic rewards data with shape (n_envs).
- terminateds (th.Tensor) : Termination signals with shape (n_envs).
- truncateds (th.Tensor) : Truncation signals with shape (n_envs).
- next_observations (th.Tensor) : Next observations data with shape (n_envs, *obs_shape).
Returns
Feedbacks for the current samples.
.compute
Compute the rewards for current samples.
Args
- samples (Dict[str, th.Tensor]) : The collected samples. A python dict consists of multiple tensors, whose keys are ['observations', 'actions', 'rewards', 'terminateds', 'truncateds', 'next_observations']. For example, the data shape of 'observations' is (n_steps, n_envs, *obs_shape).
- sync (bool) : Whether to update the reward module after the
compute
function, default isTrue
.
Returns
The intrinsic rewards.
.update
Update the reward module if necessary.
Args
- samples (Dict[str, th.Tensor]) : The collected samples same as the
compute
function.
Returns
None.