OffPolicyAgent
OffPolicyAgent(
env: VecEnv, eval_env: Optional[VecEnv] = None, tag: str = 'default', seed: int = 1,
device: str = 'cpu', pretraining: bool = False, num_init_steps: int = 2000, **kwargs
)
Trainer for off-policy algorithms.
Args
- env (VecEnv) : Vectorized environments for training.
- eval_env (Optional[VecEnv]) : Vectorized environments for evaluation.
- tag (str) : An experiment tag.
- seed (int) : Random seed for reproduction.
- device (str) : Device (cpu, cuda, ...) on which the code should be run.
- pretraining (bool) : Turn on pre-training model or not.
- num_init_steps (int) : Number of initial exploration steps.
- kwargs : Arbitrary arguments such as
batch_size
andhidden_dim
.
Returns
Off-policy agent instance.
Methods:
.update
Update the agent. Implemented by individual algorithms.
.train
.train(
num_train_steps: int, init_model_path: Optional[str] = None, log_interval: int = 1,
eval_interval: int = 5000, save_interval: int = 5000, num_eval_episodes: int = 10,
th_compile: bool = False, anneal_lr: bool = False
)
Training function.
Args
- num_train_steps (int) : The number of training steps.
- init_model_path (Optional[str]) : The path of the initial model.
- log_interval (int) : The interval of logging.
- eval_interval (int) : The interval of evaluation.
- save_interval (int) : The interval of saving model.
- num_eval_episodes (int) : The number of evaluation episodes.
- th_compile (bool) : Whether to use
th.compile
or not. - anneal_lr (bool) : Whether to anneal the learning rate or not.
Returns
None.
.eval
Evaluation function.
Args
- num_eval_episodes (int) : The number of evaluation episodes.
Returns
The evaluation results.