Skip to content

DMControl

source



Scores and learning cures of various RL algorithms on the full DeepMind Control Suite benchmark.


Environment link: https://github.com/google-deepmind/dm_control Number of environments: 27 Number of training steps: 10,000,000 for humanoid, 2,000,000 for others Number of seeds: 10 Added algorithms: [SAC, DrQ-v2]

Methods:

.get_obs_type

source

.get_obs_type(
   agent: str
)


Returns the observation type of the agent.

Args

  • agent (str) : Agent name.

Returns

Observation type.

.load_scores

source

.load_scores(
   env_id: str, agent: str
)


Returns final performance.

Args

  • env_id (str) : Environment ID.
  • agent_id (str) : Agent name.

Returns

Test scores data array with shape (N_SEEDS, N_POINTS).

.load_curves

source

.load_curves(
   env_id: str, agent: str
)


Returns learning curves using a Dict of NumPy arrays.

Args

  • env_id (str) : Environment ID.
  • agent_id (str) : Agent name.
  • obs_type (str) : A type from ['state', 'pixel'].

Returns

  • train : np.ndarray(shape=(N_SEEDS, N_POINTS))
  • eval : np.ndarray(shape=(N_SEEDS, N_POINTS)) Learning curves data with structure: curves

.load_models

source

.load_models(
   env_id: str, agent: str, seed: int, device: str = 'cpu'
)


Load the model from the hub.

Args

  • env_id (str) : Environment ID.
  • agent (str) : Agent name.
  • seed (int) : The seed to load.
  • device (str) : The device to load the model on.

Returns

The loaded model.

.load_apis

source

.load_apis(
   env_id: str, agent: str, seed: int, device: str = 'cpu'
)


Load the a training API.

Args

  • env_id (str) : Environment ID.
  • agent (str) : Agent name.
  • seed (int) : The seed to load.
  • device (str) : The device to load the model on.

Returns

The loaded API.