RND
RND(
envs: VectorEnv, device: str = 'cpu', beta: float = 1.0, kappa: float = 0.0,
gamma: Optional[float] = None, rwd_norm_type: str = 'rms', obs_norm_type: str = 'rms',
latent_dim: int = 128, lr: float = 0.001, batch_size: int = 256,
update_proportion: float = 1.0, encoder_model: str = 'mnih',
weight_init: str = 'orthogonal'
)
Exploration by Random Network Distillation (RND). See paper: https://arxiv.org/pdf/1810.12894.pdf
Args
- envs (VectorEnv) : The vectorized environments.
- device (str) : Device (cpu, cuda, ...) on which the code should be run.
- beta (float) : The initial weighting coefficient of the intrinsic rewards.
- kappa (float) : The decay rate of the weighting coefficient.
- gamma (Optional[float]) : Intrinsic reward discount rate, default is
None
. - rwd_norm_type (str) : Normalization type for intrinsic rewards from ['rms', 'minmax', 'none'].
- obs_norm_type (str) : Normalization type for observations data from ['rms', 'none'].
- latent_dim (int) : The dimension of encoding vectors.
- lr (float) : The learning rate.
- batch_size (int) : The batch size for training.
- update_proportion (float) : The proportion of the training data used for updating the forward dynamics models.
- encoder_model (str) : The network architecture of the encoder from ['mnih', 'pathak'].
- weight_init (str) : The weight initialization method from ['default', 'orthogonal'].
Returns
Instance of RND.
Methods:
.compute
Compute the rewards for current samples.
Args
- samples (Dict[str, th.Tensor]) : The collected samples. A python dict consists of multiple tensors, whose keys are ['observations', 'actions', 'rewards', 'terminateds', 'truncateds', 'next_observations']. For example, the data shape of 'observations' is (n_steps, n_envs, *obs_shape).
- sync (bool) : Whether to update the reward module after the
compute
function, default isTrue
.
Returns
The intrinsic rewards.
.update
Update the reward module if necessary.
Args
- samples (Dict[str, th.Tensor]) : The collected samples same as the
compute
function.
Returns
None.