Skip to content

RND

source

RND(
   envs: VectorEnv, device: str = 'cpu', beta: float = 1.0, kappa: float = 0.0,
   gamma: Optional[float] = None, rwd_norm_type: str = 'rms', obs_norm_type: str = 'rms',
   latent_dim: int = 128, lr: float = 0.001, batch_size: int = 256,
   update_proportion: float = 1.0, encoder_model: str = 'mnih',
   weight_init: str = 'orthogonal'
)


Exploration by Random Network Distillation (RND). See paper: https://arxiv.org/pdf/1810.12894.pdf

Args

  • envs (VectorEnv) : The vectorized environments.
  • device (str) : Device (cpu, cuda, ...) on which the code should be run.
  • beta (float) : The initial weighting coefficient of the intrinsic rewards.
  • kappa (float) : The decay rate of the weighting coefficient.
  • gamma (Optional[float]) : Intrinsic reward discount rate, default is None.
  • rwd_norm_type (str) : Normalization type for intrinsic rewards from ['rms', 'minmax', 'none'].
  • obs_norm_type (str) : Normalization type for observations data from ['rms', 'none'].
  • latent_dim (int) : The dimension of encoding vectors.
  • lr (float) : The learning rate.
  • batch_size (int) : The batch size for training.
  • update_proportion (float) : The proportion of the training data used for updating the forward dynamics models.
  • encoder_model (str) : The network architecture of the encoder from ['mnih', 'pathak'].
  • weight_init (str) : The weight initialization method from ['default', 'orthogonal'].

Returns

Instance of RND.

Methods:

.compute

source

.compute(
   samples: Dict[str, th.Tensor], sync: bool = True
)


Compute the rewards for current samples.

Args

  • samples (Dict[str, th.Tensor]) : The collected samples. A python dict consists of multiple tensors, whose keys are ['observations', 'actions', 'rewards', 'terminateds', 'truncateds', 'next_observations']. For example, the data shape of 'observations' is (n_steps, n_envs, *obs_shape).
  • sync (bool) : Whether to update the reward module after the compute function, default is True.

Returns

The intrinsic rewards.

.update

source

.update(
   samples: Dict[str, th.Tensor]
)


Update the reward module if necessary.

Args

  • samples (Dict[str, th.Tensor]) : The collected samples same as the compute function.

Returns

None.